Low-Rank Coding with b-Matching Constraint for Semi-Supervised Classification
نویسندگان
چکیده
Graph based semi-supervised learning (GSSL) plays an important role in machine learning systems. The most crucial step in GSSL is graph construction. Although several interesting graph construction methods have been proposed in recent years, how to construct an effective graph is still an open problem. In this paper, we develop a novel approach to constructing graph, which is based on low-rank coding and b-matching constraint. By virtue of recent advances in low-rank subspace recovery theory, compact encoding using low-rank representation coefficients allows us to obtain a robust similarity metric between all pairs of samples. Meanwhile, the b-matching constraint helps in obtaining a sparse and balanced graph, which benefits label propagation in GSSL. We build a joint optimization model to learn lowrank codes and balanced graph simultaneously. After using a graph re-weighting strategy, we present a semi-supervised learning algorithm by incorporating our sparse and balanced graph with Gaussian harmonic function (GHF). Experimental results on the Extended YaleB, PIE, ORL and USPS databases demonstrate that our graph outperforms several state-of-the-art graphs, especially when the labeled samples are very scarce.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملLarge Margin Semi-supervised Structured Output Learning
In structured output learning, obtaining labeled data for real-world applications is usually costly, while unlabeled examples are available in abundance. Semi-supervised structured classification has been developed to handle large amounts of unlabeled structured data. In this work, we consider semi-supervised structural SVMs with domain constraints. The optimization problem, which in general is...
متن کاملSemi-Supervised Classification Based on Low Rank Representation
Graph-based semi-supervised classification uses a graph to capture the relationship between samples and exploits label propagation techniques on the graph to predict the labels of unlabeled samples. However, it is difficult to construct a graph that faithfully describes the relationship between high-dimensional samples. Recently, low-rank representation has been introduced to construct a graph,...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملStructuration de bases multimédia pour une exploration visuelle. (Structuring multimedia bases for visual exploration)
The large increase in multimedia data volume requires the development of effective solutions for visual exploration of multimedia databases. After reviewing the visualization process involved, we emphasis the need of data structuration. The main objective of this thesis is to propose and study clustering and classification of multimedia database for their visual exploration. We begin with a sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013